PHYSICAL REVIEW E

VOLUME 51, NUMBER 5

MAY 1995

Supersymmetric time-continuous discrete random walks

Haret C. Rosu*
Instituto de Fisica de la Universidad de Guanajuato, Apdo Postal E-143, Léon, Guanajuato, Mézico

Marco Reyes’
Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados, Apdo Postal 14-740,
Mgézico Distrito Federal, Mézico
(Received 4 November 1994)

We apply the supersymmetric procedure to one-step random walks in one dimension at the level

of the usual master equation, extending a study initiated by H.R. Jauslin [Phys.

Rev. A 41,

3407 (1990)]. A discussion of the supersymmetric technique for this discrete case is presented by
introducing a formal second-order discrete master derivative and its “square root,” and we solve
completely, and in matrix form, the cases of homogeneous random walks (constant jumping rates).
A simple generalization of Jauslin’s results to two uncorrelated axes is also provided. There may be
many applications, especially to bistable and multistable one-step processes.

PACS number(s): 05.40.+j, 11.30.Pb

I. INTRODUCTION

A number of interesting results have been obtained in
the past for the bistable Fokker-Planck equation [1] by
means of the Witten supersymmetric approach [2]. Sev-
eral years ago, in a paper hereafter denoted as I, Jauslin
[3] developed the method of supersymmetric partners
for time-continuous uncorrelated discrete random walks
(RW’s) in one dimension (1D). He discussed briefly the
factorization of the discrete master operator, some of the
properties of the superpartners, and as an application,
the so called “addition of eigenvalues” method, generat-
ing bistability and multistability, in the supersymmetric
framework. However, apparently Jauslin’s treatment is
not so directly linked to Witten’s approach. To provide
a more Witten-like picture to this discrete case was one
of the motivations for our work. The paper is organized
as follows. A discussion of the supersymmetric discrete
master operator is presented in the next section, where
we introduce a discrete master second derivative and its
“square root” that enables us to write down a formal
Riccati equation. In this way we come close to Wit-
ten’s treatment allowing us to solve the simple case of
homogeneous RW’s. In Sec. III one can find an outline
of Jauslin’s “addition of eigenvalues” method. Then, in
Sec. IV we make a simple generalization to two uncorre-
lated axes for homogeneous RW’s, and we end up with
some conclusions.

II. SUSY MASTER OPERATOR: FORMALISM

The 1D master equation used in I is the common one
referring to three neighbor sites (or states),
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_Qﬁgz’_t) = —f(n—1)P(n—1,t) — b(n + 1)P(n + 1,1)

+[f(n) +b(n)|P(n,t) = (M_P)(n,t), (1)

where f(n—1) is the transition rate for one-step forward
jumps starting at the (n—1) site and b(n+1) is the corre-
sponding rate for the backward one-step jumps starting
at the (n + 1) site. The jumps are random and the site
(or state) is following a Markovian process with the evo-
lution of the probability given by the master equation.

It is well known that the solution of the time-
independent equation M_P,; = 0 is [4]

P, (n) = const x H % (2)

This form is a result of the detailed balancing condition
Ff(n)Py(n) = b(n + 1)Ps;(n + 1). The master operator
M_ can be made Hermitian by defining a function
¥(n,t) = [Pa(n)]7/2P(n,1). (3)
This function satisfies an operatorial equation of the type
—%g:’—tl = (H_%)(n,t), which is similar to Eq. (1),

oY(n,t

SO — (Db (n — 1,0)

—[f()b(n + 1)]/*p(n + 1,1)

+(f(n) + b(n)]¢(n, 1) (4)
The “Hamiltonian” operator H_ is a symmetric positive
operator with respect to the appropriate discrete /5 scalar
product. Also, for a normalizable P, the lowest eigen-
value of H_ is nought and the ground state eigenfunction
is ¢gr,— = [Pst]l/z. The factorizing operators have been
found in I to be

(AT9)(n) = b*(n+ 1)¢(n + 1) — f/?(n)d(n) (5)
and

(A=) (n) = b2 (n)yp(n — 1) — FY/%(n)3(n). (6)
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These two factorizing operators can be written as

A =% (n 4+ 1)} + b2 (n+ 1) — FY/%(n)]
=bY2(n +1)8F + W+ (n) (7a)
Aty(n) = b2 (a:: + :Kz ) P(n) (7b)
n+1
and
= —bY2(n)8}_, + [b'/%(n) — FV/%(n))]
= —bY2(n)8F_, + W (n) (8a)
A™9(n) = b}/? (—a:.l 1/2) b(n), (8b)

where 9F¢(n) = ¥(n + 1) — (n) and 9] _,9¥(n) =
P(n) — ¥(n — 1) are discrete derivative operatlons, and
the functions W_(n) and W, (n) correspond to the su-
perpotential of the continuous limit as applied to ¥(n).
In this way, H_ = At A~ and the superpartner will be
H, = A~ A*. Following I, we suppose the “Hamilto-
nian” H, to be of the same type as H_. That means so-
lutions of the type by (n) = f_(n) and fi(n) = b_(n+1).
We write now the matrix form, i.e., the nilpotent mas-
ter supercharges, of the factorizing operators, Q,, =

+
A_oy = (Ao_g) and QF; = Ajo_ = (ng ); o_ =

(8 (1)) and oy = (l]g are Pauli matrices. In this real-
ization, the matrix form of the “Hamiltonian” operator
is
_(AtA~ 0 H_ o0
7“( 0 A—A+)‘( 0 H+) ©)

defining the partner “Hamiltonians” as diagonal elements
of the matrix one. They are partners in the sense that
they are isospectral, apart from the ground state ¢g; _
of H_, which is not included in the spectrum of H,.

There is also one way of writing a formal discrete Wit-
ten scheme for the master operator. Firstly we write the
operator action in the form

1/2
H—w(n):_(bnfn)l/z{[<bz—+l) ¢n+1 —21/’71

Fai\ 2 by + fn
+ ( fnl) 'l/)n—1] + [2 - ———(bhfn)l/z]¢n

(10)
and consider this operator as a one-site (local) operator,

i.e., acting on ¥(n). For this, one should introduce a
discrete second derivative operation of the type

b - 1/2
aﬁl,nw(n) = [( Z ) ¢n+1 - 21/}n

+ (fr};l)l/z ¢n_1] (11)

that we call a master discrete second derivative operation.
In this way the master equation can be written “locally”

as follows:
H_$(n) = (bufa)’} [—a?u,n + ( 2) | win.
(12)

Then one can proceed formally with the Witten scheme,
by defining the “square root” operator of 812%", or more
exactly we have to go from the second master derivative
to the first one by square-rooting, an operation to which
we do not give here any rigorous meaning and we just

denote it as 1/812‘4,71

(bnfr)*/?

Then one may consider the sym-

bntfn
by fn )1/2
the role of the “Schrédinger” potential that we consider

as a given quantity. Consequently

_ =2(bafa)i[AT A + 4], (13)

metric discrete part S(n) = 1[( — 2] as playing

where we introduced in the usual way the symmetry
breaking parameter ¢ (factorization energy), and

1
£ E[:t O3 n + W (n)]. (14)
The formal Riccati equation for the master superpoten-
tial Wy (n) would be

Wir(n) + /0%, . Wa(n) = 2[S(n) — €. (15)

The master superpotential Wys(n) appears to be a fac-
tor acting on ¥(n), but taking into account the nonlo-
cal (three-site) character of the discrete master second
derivative the above Riccati equation is formal as far as
we introduced merely notations in order to put into ev-
idence the similarity with the standard supersymmetric
(susy) quantum mechanics.

An explicit case that can be solved completely is that
of jump rates independent of the location along the axis,
i.e., b, = c1, fn = c2, with ¢; and ¢, two positive con-
stants. For free RW’s ¢; = c2, while for ¢; # c; we
have an anisotropic RW. One can also normalize to unity,
c1 +c2 = ¢ = 1. In these cases there is a similarity be-
tween the master discrete second derivative and the pop-
ular discrete second derivative obtained when one starts
from the continuum and makes the usual discretization
up to O(A?2) terms,

7"(@) = x5lf @+ A) = 2£(z) + (= — A)] + O(A?).
(16)

Therefore in the continuum limit we identify the master
second derivative with a common spatial second deriva-
tive implying the evolution equation

+[(c1 + €2) — 2(c1¢2) 7] | % (n)

H—-"/’(”) = [—(0162)% 88 2

(17

which being a normal Schrédinger equation is easily ma-
nipulated within the Witten susy scheme. Indeed, by
the rescaling z = 27Y2(cic2)"Y4n we get H_v(z) =
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[—%3'9—:, + S(e1,¢2)]¥(z). This is a “Schrodinger-type”

equation for a unit mass particle in the S(c1,c2) poten-
tial. Next, in the framework of the addition of variables
method (see the next section) we have to solve the equa-
tion H_vy = —Ai, with A a positive constant, corre-
sponding to the case € = —), less than the ground-state
energy [5]. In the normalized to unity case, ¢; + ¢z = 1,
the stationary solutions must be of the following hyper-
bolic type:

Po(z) x exp {:i:\/2[1 —2(c1e2)1/2 + ,\]m} . (18)
It is really easy to derive the exact form of v if we require
the ground-state wave function to be an acceptable one,
that is, I “integrable” and satisfying correct boundary
conditions. The latter ones are that it must vanish at the
end points £oo, in agreement with the Sturm-Liouville
theory (see I). To be more concrete, let us consider the
free RW, ¢; = ¢z = 1/2. Then S5(1/2,1/2) = 0 and the
corresponding susy quantum mechanical problem is that
of a free particle. The Riccati master equation, Eq. (15),
can be written

W2 (z) + %—VZ =2\ (19)

with the solution W (z) = v2A tanh[v2A(z — z¢)], where
o is an integration constant. Then in the unbroken susy
case it is known that

1o = exp [— / W(:c’)d:c’] .

By introducing the tanh solution one gets immediately
1o = cosh(v/2Az), i.e., similar to the findings of Jauslin.

(20)

III. THE ADDITION OF EIGENVALUES

Jauslin’s method of addition of eigenvalues is clearly
exposed in I and we make here a brief outline. In fact, this
method is a disguised form of a well-known procedure in
susy quantum mechanics [5, 6], namely the factorization
energy € less than the ground-state energy. The idea con-
sists in constructing a shifted “Hamiltonian” with respect
to an initial one, Hy. Both Hamiltonians have zero ener-
gies for their ground states, but all the other eigenvalues
of the shifted one are displaced with a chosen arbitrary
distance, say A;, from the ground-state energy. Then,
the proposal of Jauslin is to identify the shifted Hamil-
tonian with H;. This condition leads to the following
system of equations for the new jump rates f; and b;y:

fi(n)bi(n) = a®(n) = fo(n)bo(n — 1), (21)
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The following ansatz,

=a(n —¢0(’n) a
fi(n) =af )¢O(n_ 0’ (23a)
ba(n) = a(m) 227, (23b)

causes the geometrical mean equation, the first part
of Eq. (21), to be identically satisfied, and moreover,
Eq. (22) is turned into a Schrédinger-type equation for
the initial Hamiltonian at the eigenvalue —A;, Hp¢p =
—A16o.

The real importance of the above method comes out
when one is going to add even more eigenvalues (i.e.,
continuing the shifting) by an iteration procedure of the
form

Hy 1¢p—1 = —Apdp—1,k > 1.

For the second eigenvalue, generating bistability in the
stationary probability, one can obtain easily

(24)

n)= n n — 1/2M a
f2(n) = [f1(n)b1(n — 1)] S —1)’ (25a)
n) = )by (1 — 1/2451(”“1)
ba(n) = [f1(n)bi(n — 1)] o) (25b)

The corresponding stationary probability, which is the
quantity of interest, is

[f1(n)by(n — 1)] /2
$1(n)p1(n—1)

In Eq. (26), the jump rates f; and b; are determined
through Egs. (23) above, while the function ¢, is given
by

$1(n) = bi/zéo("&/\ + A2) — fll/z(n)q_So(n — 1,21 + A2).
(27)

As sketched in I, the expression for the function ¢ comes
out from the Sturm-Liouville theory. When the second
eigenvalue is made some two orders of magnitude smaller
than the first one, a well-defined bistability (or bifurca-
tion) in the stationary transition probability starts de-
veloping. This was shown in I for the simple case of an

. initial free random walk, i.e., fo(n) = bo(n) = 1/2, and
will be shown here for the two-axes generalization (Figs.
1 and 2).

P5*(n) = const x (26)

IV. UNCORRELATED TWO-AXES
GENERALIZATION

The simplest generalization of the results obtained
in I is to the case of homogeneous (i.e., free and/or
anisotropic) RW’s along two uncorrelated discrete axes.

(b)

fi(n +1) + b1(n) = B(n) = fo(n) + bo(n) + As. (22)
(a)
0.05% 0.035
0.04 0.03 '
0.025
0.03
PR m 0.02
0.02 0.015
0.01
0.01
0.005
0 0
-40 -20 0 20 40 -40 -20

FIG. 1. Stationary states Ps*(n) and
P;3*(m) for two uncorrelated free RW along
two axes A and B with the two eigenvalues
as follows: (a) A1a = 0.01 and Az4 = 0.01;
(b) A1 = 0.01 and Az2p = 0.0005. This is a
case with bistability along one axis only.

20 40
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(a) (b)
0.035
0:035 0.03
0.03 0.025 FIG. 2. The same as in Fig. 1 but with
0.025 N . .
pavcy 0.02 i 002 the following set of eigenvalues: (a) Aia =
O o T o 0as 0.01 and Aza = 0.005; (b) As = 0.01 and
0.01 0.01 Ad2p = 0.0002. This case displays bistability
0.005 0003 along both axes.
0-40 -20 0 20 40 0.4() -20 0 20 40
A B
This pair of axes can be anything like space and time, cal situations, allowing us to have various combinations
light front discrete coordinates, energy and space, two for the two stationary states P§t(n) and P§*(m) on the
space axes, and so on. When the two axes are sup- two axes depending on the choice of the two eigenval-
posed uncorrelated, one can write down easily the ma- ues on each axis. We plotted for illustration a discrete
trix form for the independent RW’s along the two axes, free RW case with bistability on one axis alone and an-
since this case corresponds to the separable 2D poten- other one with bistability on both axes (see Figs. 1 and

tials in supersymmetric quantum mechanics. The algebra 2). The plotted functions are of the type obtained by
of the supercharge operators can be realized by writing  Jauslin P§t = m with

Q =q xoyand QY =q* xo_, withq™ = (A_ 0 )

0B ¢1(n) [ ! ]l/zsinh('yn d2)
+ 1) = |57 21 — 02
and ¢* = (AO B0+) The o4 matrices are again the 2a(n) ;
1/2
Pauli matrices. The symbols A and B correspond to the - [2@—2] sinh [y2(n — 1) — &7, (29)
first and second axis, respectively, and are given by ex- 2

pressions of the type 7(a) and 7(b) or 8(a) and 8(b) above. cosh(y,n—8;)

The total 4x4 “Hamiltonian” matrix can be written as where a(n) = Car G 5] ' and 7, = arccos‘h(‘l A,
~v2 = arccosh(1 + A1 + A2), with A\; and A; shifting con-

A+OA B +OB_ g 8 stants, and §; and §, arbitrary constants. o
Hap = 0 0 A-A+ 0 (28) For homogeneous RW’s in the continuous limit the ma-
trices g* can be written in terms of the “superpotentials”
0 0 0 B™BT W4 (n) and Wg(m) on the two axes in the form
The supersymmetric partner “Hamiltonians” are diag-
onalized 2x2 matrices, with each diagonal component + i% + Wa(n) 0 (30)
depending on one axis alone. 7 = 0 ﬂ:% + Wg(m)
Even this trivial two-axes generalization implies nev-
ertheless a richer spectrum of possibilities for the physi-I or
£ :t% + \/Ztanh[\/Z(z — Zo)] 0 (31)
T = 0 :l:a% + VA tanh[vVA(y — )] |’
|
where A = 2[1 — 2&0102)1/ 2 + )], and we rescaled the co- cesses [7] such as the number of molecules in a chemical
ordinates z = 27/2(cica) V40, y = 2712 (cic0) "V 4m; species, the number of photons in a lasing mode, or the
zo and yp are integration constants. The explicit form of number of electrons on a capacitor. It will be of interest
W 4, B results from solving a Riccati equation of the type to apply supersymmetric algebraic schemes to multistep
Eq. (19) with X replaced by [1 — 2(c1c2)1/2 + A processes as well. It will be also very useful to find closed

analytical forms for the more realistic correlated two-axes

V. CONCLUSIONS case, which must be studied carefully.
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